Randy Marques Consultancy
Embedded Software Development

GBS
Generic Build Support

Pragmatic Approach to the

Software Build Process
6.00

randy.marques.com@xs4all.nl

Introduction - Who am 1

 Randy Marques - CASE Consultant
— Retired
— CEO / Owner Randy Marques Consultancy

— Nederlands Normalisatie Instituut (NEN)

* Nederlandse Programmeertalen Commissie (NC 381 22)
— WG14 (International ANSI-C Committee)

— Teach at various Universities and Colleges

e “Consultancy by Walking Around”
— Software Engineering since 1971
— Coding Standards since 1978
— Build Automation since 1980
— C Programming since 1983
— Static Analysis since 1993
— Les Hatton’s Safer C™ trainer since 2001

Generic Build Support - Concepts Copyright © Randy Marques

/",y'/; Y B 4
yF JF rF
.) N

Scope

* Low, Low Level ‘Configuration Management

* Build Automation
— Compiling, Linking
— F5
* |ssues
— Directory Structure
— Scripting (‘make’)
— Multi Platform Variants
— Functionality Variants
— 3rd party software, Subcontracting, ‘re-use’

— Releasing

Generic Build Support - Concepts Copyright © Randy Marques

’

/",y'/; Y B 4
¥y JF 7
.) N

Overview

e Task Lifecycle

* Problem Areas

* The Solution

* Does it Work

* Final Remarks & Questions

Generic Build Support - Concepts

Copyright © Randy Marques

Task Lifecycle:

Single Level Promotion Model

ARCHIVED’

ARCHIVED

Consolidate /

Baseline Check Out

INTEGRATOR WORKING

Take Check In / Deliver
COMPLETED
Generic Build Support - Concepts Copyright © Randy Marques

, "Hf i “W s

Overview

e Task Lifecycle

* Problem Areas
— Volume
— Scripting
— Directory Structure
— Integrity
— Variants
— Delivering
— Tooling
* The Solution
* Does it Work

* Final Remarks & Questions

Generic Build Support - Concepts

Copyright © Randy Marques

ﬂ*#, h

Volume

e Software Generation:
— Lines of code

e 20 files of 100 lines -> 5000 files of 400 lines
e 2000 lines -> 2.000.000 lines
— Generation takes better part of the night
e 2 ‘specials’ (10%) -> 500 ‘specials’
— Quick Fix???
— People

* 4 programmers -> 80 programmers

* 1 Programmer
— 1 Check-in every week
— 1 build-error every 15 check-ins
» Every 75 days 1 build-error

* 75 Programmers
— Every day the build fails!

Y G
AN &7 &

Generic Build Support - Concepts Copyright © Randy Marques

A
F

Volume

e Success breeds complexity

— Brian A. White
(Software Configuration Management Strategies)

* The size of code in consumer electronic products
currently doubles every 18 months

— Line-Scan TVs have ~ 1.500.000 lines of code

* Murphy’s Law:

— If something CAN go wrong,
if you do it often enough,
it WILL go wrong

Generic Build Support - Concepts Copyright © Randy Marques

/“. -,/ i ;5/,‘1”'.' V,
(1)
W / {1

From Barn to Skyscraper

* We started off building ¢ And we are convinced
yard barns that to build
skyscrapers we only

need to extrapolate...
I

Generic Build Support - Concepts Copyright © Randy Marques

Overview

10

e Task Lifecycle

* Problem Areas
— Volume
— Scripting
— Directory Structure
— Integrity
— Variants
— Delivering
— Tooling

e The Solution
e Does it Work
* Final Remarks & Questions

Generic Build Support - Concepts

Copyright © Randy Marques

ﬂ*#, h

Problem Area: Scripting

11

e Start simple
 Complex and elaborate scripting

— Dedicated
* per project (subsystem / component / file)
» per platform, per user, per exception
* perrelease

— Used to solve Managerial and Architectural issues (Silver Bullet)

— Support for the weirdest exceptions
(even the one we consider 'bad practice’)

— Inconsistent

— Platform dependent

— Impossible to change

— Long learning curve (use and maintenance)

— Much, very much maintenance

— Hard-coded, absolute file-paths, search-paths

— Dependent on external local settings (.profile / Registry)
— Abuse of 'make’

Generic Build Support - Concepts Copyright © Randy Marques

(i AN
[[/
| / A

Problem Area: ‘make’-Scripting

12

* The essence of ‘make’:
— re-generate as little as possible
— Dependencies
— ‘A Program for Directing Recompilation’ (GNU-make)

e Pollution of ‘make’

— Used to define build-process instead of supporting build-process
* Header-file directory specification
* Compile options
* Generation of various functionality/platform variants
— Unsafe make:
e Always 'clean' and 'build all’

If | always regenerate my whole system
(because my 'make’ is not safe):
Why do | use 'make'?

Generic Build Support - Concepts Copyright © Randy Marques = il&&‘k

Problems With ‘make’

13

* Maintaining Dependencies

e Start-off small & simple.
Grow and become too complex

— No-one dares to make modifications
— Not-maintainable make-files (> 40.000 lines!)

* Multiple checkout on make-files
* Completely platform/environment dependent

* Build for more than 1 platform?
— On different machines

e Suffix rules: all files must be in same directory
e Search-paths (differ on various machines)
* more...

Generic Build Support - Concepts Copyright © Randy Marques

/“. -,/ i ;5/,‘1”'.' V,
(1)
W / L

Problems With ‘make’...

e Recursive make

— Recursive make Considered Harmful (1997)

Peter Miller
http://www.canb.auug.org.au/~millerp/rmch/recu-make-cons-harm.html

* Weird restrictions: e.g.:
— only 1 library/executable per component
— make of single file not possible
— etc.

* Extremely complex

No Design, No Standards, No Reviews,
No-one feels responsible

14 Generic Build Support - Concepts Copyright © Randy Marques = JI&&L

‘make’ Basics

15

* make-File:
— Collection of make-rules

— Macros & Control-
statements

* make-Rule:

target : dependencies
<TAB> command [; ..]

Generic Build Support - Concepts

edit.exe
<TAB>

main.o :
<TAB>
kbd.o :
<TAB>
command.

<TAB>

: main.o kbd.o command.o

Ink -0 edit.exe main.o \
kbd.o command.o

main.c defs.h

CC —-C main.c

kbd.c defs.h command.h

cc -c kbd.c

o : command.c defs.h \
command.h
cc —-c command.c

Copyright © Randy Marques f !\ M&“k

What About IDEs?

16

* |DEs:
— Visual Studio, Tornado, Greenhills
— OpenSource: ant, scons, quickbuild, etc.

* Problems:
— Obscure internals

— Dedicated:
 No interaction between different brands
e Build for more than one Platform: problems

— (Elaborate) scripting needed

— Based on ‘handy-tool’ concept. Not SWE concept.
* Flexible, so every project (release) has different implementation...

— Sales argument:
"We will support whatever way of working you want”

/",y'/; Y B 4
yF JF rF
.) N

Generic Build Support - Concepts Copyright © Randy Marques

What About IDEs?

17

* Make life simple on programmer’s level
(“Every nitwit can”)
not on Project or Company level.

* No support for structured way of working (scoping)
* Limitations on number of executables, libraries, etc
 Dependent on search-paths

* No automatic testing integration (module-test)

 Dependent on various specific versions of different
tools (OpenSource)

 Anyone can do it 'in his own way'

Generic Build Support - Concepts Copyright © Randy Marques

Overview

18

e Task Lifecycle

* Problem Areas
— Volume
— Scripting
— Directory Structure
— Integrity
— Variants
— Delivering
— Tooling

e The Solution
e Does it Work
* Final Remarks & Questions

Generic Build Support - Concepts

Copyright © Randy Marques

[/ /

Problem Area: Directory Structure

* Trying to map a software-structure on a directory
structure

— Software Structure:

 Tree-like Network Structure

— Directory Structure:

* Tree Structure

* Relocating a directory inside the tree structure
causes major problems in generation (‘make’) files

, "Hf i “W s

19 Generic Build Support - Concepts Copyright © Randy Marques

Software Structure

20

A |

Generic Build Support - Concepts

Copyright © Randy Marques

(lts,

Component Structure

* A multi-component system always consists of at least
4 components:

main
A B A B
glo

Generic Build Support - Concepts Copyright © Randy Marques = W’g’“j“k

Directory Structure - Flexibility

22

 What effort does it cost to add a new component
— or compiler
— or variant
— or platform

 What are the consequences for an SCM-tool
 What do | do with ‘re-use’ from another project

* Environment variables, System Settings
— .profile?
— Registry?

Do | spend 4 man-months to define my dedicated directory-structure

and 'make'-method every time | start a new project?

Generic Build Support - Concepts Copyright © Randy Marques

&mﬁm

Overview

23

e Task Lifecycle

* Problem Areas
— Volume
— Scripting
— Directory Structure
— Integrity
— Variants
— Delivering
— Tooling

e The Solution
e Does it Work
* Final Remarks & Questions

Generic Build Support - Concepts

Copyright © Randy Marques

ﬂ*#, h

Problem Area: Integrity

24

* How safe/complete is my generation process

— Was really everything compiled before the link?
— Did all files compile properly before Freeze/Archiving/Release?

* Given an executable, can | recreate exactly the
environment leading to its creation?
— Sources
— Parameters (compile-time options)

Given the amount of money spent on SCM-tools and
procedures, how reliable is my ability to regenerate the
software?

Generic Build Support - Concepts Copyright © Randy Marques f !\ “&“k

Overview

25

e Task Lifecycle

* Problem Areas
— Volume
— Scripting
— Directory Structure
— Integrity
— Variants
— Delivering
— Tooling

e The Solution
e Does it Work
* Final Remarks & Questions

Generic Build Support - Concepts

Copyright © Randy Marques

ﬂ*#, h

Problem Area: Variants - 1

26

* \ersions
— Taken care of by SCMS

» Variants / Diversity
— Platform

— Functionality
e Hardware
e Software

 Compile-time Options &
Conditional Compiles
— Many Options
— Many Possible Values

Generic Build Support - Concepts

#ifdef SUN

#endif

Copyright © Randy Marques

(lts,

Problem Area: Variants - 2

277

* Problems:

— Too many permutations
* Always starts with just a few...
* Which combinations are valid?
* Not readable, not maintainable

— Which variant is now in my object-library?
— Which variant did | build my executable with?
— Compile archived version with different option:

e compilation fails
— Not Testable

Given an executable that was built on a specific date and time:
What were the settings that led to this executable?
(I mean: ALL the settings...)

Generic Build Support - Concepts Copyright © Randy Marques f«l”;

Platform Variants

 Compile-Time diversity (Conditional Compiles)
* Link-time diversity (Multiple Sources)

— file.c
* file_pc.c => file_pc.o time ()
* file_vms.c => file_vms.obj time ()
* file_sun.c => file_sun.o time ()
— BLD
e PC <= Build-output Directory
* VMS
* SUN

e Combinations

Platform dependent functionality should be isolated into one or
two components

28 Generic Build Support - Concepts Copyright © Randy Marques f !\ “&“k

Functionality Variants

29

* Link-Time diversity (Multiple Sources)
 Run-Time diversity
 Combinations

* As an example we will use the generation of two
executables that share a lot of code:

— A Video-Player and
— A Video-Recorder

Generic Build Support - Concepts Copyright © Randy Marques

' ﬂ’?,‘// \'flf "/
e d -

Compile Time Diversity

* Traditional Approach:
MAKE-FILE:
-D RECORDER

FILE.C:
#ifdef RECORDER

#else

#fendif

1
g 7_}
30 Generic Build Support - Concepts Copyright © Randy Marques II”.A

Run Time Diversity

31

e Compile-Time:

#ifdef RECORDER

do recorder():;

#felse

#fendif

Generic Build Support - Concepts

Run-Time:

1f (recorder ())

{

do recorder();

} else

{

Copyright © Randy Marques

[(/7%

Run Time Diversity

32

Link-Time diversity

e Filel: return TRUE

* File2: return FALSE

* Link with either file

e 'Stubs' to save memory

Read a file (.ini)

Read Hardware jumpers

Read command-line arguments

Ask the user

Setting the condition for ‘recorder’:

Diversity is not a Build issue:
It is @ SW Architectural issue

Generic Build Support - Concepts

Copyright © Randy Marques

flll ‘*(b_

Overview

33

e Task Lifecycle

* Problem Areas
— Volume
— Scripting
— Directory Structure
— Integrity
— Variants
— Delivering
— Tooling

e The Solution
e Does it Work
* Final Remarks & Questions

Generic Build Support - Concepts

Copyright © Randy Marques

ﬂ*#, h

Delivering

34

e What do | deliver

 What is my product
— Executable
— Libraries + headerfiles
— Directory structure
— Install

* How do | “assemble” my deliverable?
— Copy directly from bld-directory?
— Document?
— Script?

Generic Build Support - Concepts Copyright © Randy Marques

L

[
! ~.'/‘:.'__,.;’~

Overview

35

e Task Lifecycle

* Problem Areas
— Volume
— Scripting
— Directory Structure
— Integrity
— Variants
— Delivering
— Tooling
* The Solution
* Does it Work

* Final Remarks & Questions

Generic Build Support - Concepts

Copyright © Randy Marques

ﬂ*#, h

Problem Area: Additional Tooling

36

* How to implement additional tooling

— Doxygen
— SCAs like PCLint, QAC, C++Test

* Automatic Testing
* Multiplatform?

e Example:
— QAC

* How do | specify which files to check
* How do | obtain header-file include directories (- I)?
* How do | obtain compile time options (-D)?

e ‘make’ ?

Generic Build Support - Concepts Copyright © Randy Marques

Overview

37

* Task Lifecycle

* Problem Areas

* The Solution

* Does it Work

* Final Remarks & Questions

Generic Build Support - Concepts

Copyright © Randy Marques

Solution

38

Generic Build Support
* A Concept

* A Set of Agreements

* ARigid Directory Structure

* No built-in Knowledge of Application
* No user-written scripts

* Generated 'make’ Files
 Multiplatform generation

* Implementation Support:
— Scripts
— Currencies
e Current System, Current SubSystem, Current Component, Current Build

['vl"/“" ..,:‘._"
. ¥

Generic Build Support - Concepts Copyright © Randy Marques

Solution: Basic Rules

39

* Simple approach. No Black Box. KISS
* Transparent: No clever tricks

* Rigid where no flexibility is required
Full flexibility where flexibility is needed

* Do not cater for things we agree to be ‘bad practice’
* No project-dependent scripting

* Automate anything that can go wrong when done
manually
(but do not try to achieve 100% automation when in
conflict with Rule 1)

 Must be generic (no knowledge of application)
* Must be SCMS and target-platform independent
* Must have a relocatable directory-structure

Generic Build Support - Concepts Copyright © Randy Marques

Prepare Yourself

40

Take a deep breath
e Stretch yourself
 Empty your mind

— Do NOT think of your current implementation

e Relax

Generic Build Support - Concepts Copyright © Randy Marques /I’"L

Overview

41

Task Lifecycle
Problem Areas
The Solution

— Directory Structure and scripting

— Integrity

— Finalizing

Does it Work

Final Remarks & Questions

Generic Build Support - Concepts

Copyright © Randy Marques

&,

iy
A AT b
([

‘Flat’ Directory Structure

42

* System:
— EXT (externals) Directory
* 3rd party SW Directories
— DEV (Development) Directory

e SubSystem Directories
— RES (Results) Directory

* SubSystems Transfer Directories

Generic Build Support - Concepts Copyright © Randy Marques

‘Flat’ Directory Structure

43

e SubSystem Directory (non-GBS Compliant)
— APP-Directory

e Grow Your Own

— DATA-Directory

* Grow Your Own
— EXPORT-Directory (Optional)
— Main scripts
e SubSystem Directory (GBS Compliant)
— COMP-Directory

* Component Directories
— Sub-Directories (SRC, INC, BLD, etc.)

— EXPORT-Directory (Optional)

Generic Build Support - Concepts Copyright © Randy Marques

i 4

g
I [/
Rl '/

| B Y A

Non GBS Compliant

44

System

SubSystems

APP

Any Structure

System 1 System_2 System_ 3
res dev ext
Sub 1 Sub 2 Sub 3
/‘\ build
data app
IZAN IZAN
Generic Build Support - Concepts Copyright © Randy Marques

y .v;'? /

GBS Compliant

System 1 System_ 2

System_3

/\

res dev

Sub 1 Sub 2

Generic Build Support - Concepts

System
ext
Sub_3 SubSystems
COMP
E Components

Sub-Directgries
Nfﬁy;;¢
W Y

Copyright © Randy Marques

Sub Directories

46

* SRC
— Sources
* INC
— Global (exported) Header-files
* LOC
— Local Header-files
* BLD

— Contains <build>-Directories
* Results of building (compilations)

* AUD

— Results of additional tooling (gac, pclint etc)
 More later...

Generic Build Support - Concepts Copyright © Randy Marques

(lte,

Currencies

477

e GBS works with ‘currencies’:

— Current System

— Current SubSystem
— Current Component
— Current Build

* Navigate thru the directory tree by means of ‘switch’

commands:

— swr: switch System

— sws: switch SubSystem
— etc.

 The current Build specifies a specific compiler

environment
— Compiler / Archiver / Linker to use
— Settings

Generic Build Support - Concepts Copyright © Randy Marques

[[/
bl l B e
f)

Scoping

component directories —

48

N

moOm>

Src

Scope-files contain component-names, no directory specs.
SCOPE.GBS in Component Directory
— Specifies the ‘VIEW’

‘Uses’ and ‘Is Used’

Sub 1

EXT/RES directories-ref

comp

m oo

——

mo O

%E\E

INC

bld

Generic Build Support - Concepts

Copyright © Randy Marques

Compile-time Options - 1

49

* Options are placed separately in option-files

— Options for all C-files in project:
* FLAGS C.GBS In COMP directory

— Options for all C-files in component:
* In FLAGS_C.GBS in Component directory

* For compilation, options are placed in the order
specified above.

— Last option wins...

Generic Build Support - Concepts Copyright © Randy Marques

L

f
1 I 5

Compile-Time Options - 2

FLAGS C.GBS
Sub 1 Dy
-Dyyy
-Dzzz
comp
FLAGS_C.GBS
-Daaa %\
-Dbbb
A B C D E
Src inc bld

Generic Build Support - Concepts Copyright © Randy Marques f”"*;

Build Automation Basics

* Anatomy of a Build Step

generated files

original files !

name.xXxXX name.yvyy

v

nName.zzz

v

control

51 Generic Build Support - Concepts Copyright © Randy Marques

Generating a Compilation

e Given a source file of the current Component of the
current SubSystem of the current System with a
current Build, we have:

— Source File name (file.c)
— Compiler to be used

— Extension of object-file name (.0)

— Object-file name (file.o)
— Header-File Directory information

— Compile Options Information

— Input & Output Directory

* So we have a generic script that generates a
dedicated compile command.

Generic Build Support - Concepts Copyright © Randy Marques

/“. -,/ i ;5/,‘1”'.' V,
(A \
| / 1‘~.

Libraries And Executables

53

e What if | do not have a source-file?

— Libraries
— Executables

Generic Build Support - Concepts Copyright © Randy Marques /’"‘A

Generating a Link

* Traditionally done in ‘make’ file

* Enter: Link-file
— Works the same way as ‘compile file'
— name.glk => name.exe

— Contains:
component:objectfile—-name e name glk —> name.exe
— Also: ' '
. . , * Contents:
.include <inc-filename> ,
A:main.o
A:a.o
* So we have a generic script A:al.o
that generates a dedicated E:Eio
. . .0
link command. Cic.1ib

L

Generic Build Support - Concepts Copyright © Randy Marques ‘4".'7":'4.,.,‘

Generating a Library

* Traditionally done in ‘make’ file

e Enter: Library-file
— Works the same way as ‘compile file'
— name.glb => name.lib

— Contains:
component:objectfile—-name -
— Also: * name.glb => name.lib
.include <inc-filename> * Contents:
A:a.o
* So we have a generic script A:al.o
that generates a dedicated B:b.o
archive command. B:bl.o
C:c.1lib

L

Generic Build Support - Concepts Copyright © Randy Marques ‘4".'7":'4.,.,‘

Automatic Testing too...

56

 Module-tests as part of the build-system

* Enter: Test-file:
— Works the same way as ‘compile file’
— name.glt => name.log

— Contains:

component:executable—name
* name.glt => name.log

— Returns: Normal or Fail
e Contents:

A:MyTest.exe
* So we have a generic script

that generates a dedicated
test-command

[/ “‘\;;') { }
Generic Build Support - Concepts Copyright © Randy Marques (

Generating a SubSystem

57

In the SRC directories of all Components:

— Compile all *.c files into objects

In the SRC directories of all Components:

— Archive all *.glb files into libraries

In the SRC directories of all Components:

— Link all *.glk files into executables

All results go to the current BLD/<Build> directories

&Y O
[[/
\ i)_‘;‘:.‘/‘ 4

Generic Build Support - Concepts Copyright © Randy Marques

Flavors of 'build’

58

e gbsbuild file.c
e gbsbuild <list of individual files from same or other

component>
e ghbsbuild <all files in one or more components>
e ghsbuild <all files in one or more subsystems>
e gbsbuild *:*.*
e etc...
enerie Bud Sumeert Comecnis ————— LT

f
1 I 5

Generating a make-file

* For each Component:
— Take each file in the SRC-directory as a 'make’-target

— Parse the file using the same information as for generation
of Compile, Archive or Linking to determine dependencies

— Generate the make-file

59 Generic Build Support - Concepts Copyright © Randy Marques

Flavors of ‘make’

* ghsmake image.exe
e gbsmake <list of specific files>

* ghsmake <all files in list of specific components>

e gbsmake <SubSystem>
e etc...

Generic Build Support - Concepts Copyright © Randy Marques = '%@%L

Differences between 'build' and 'make’

61

* 'build’
— you specify the source (e.g. file.c)
— only the specified file(s) will be built
— all the specified files will be built

* 'make’
— you specify the resulting file (e.g. file.o)
— other files (even in other components) may be built
— specified files may or may not be (re-) built

Generic Build Support - Concepts Copyright © Randy Marques

Additional Tooling

62

* Given the method for generating a dedicated build
step command we can easily implement any kind of
auditing (SCA) tool
— QAC, QAC++, PCLint , C++Test

* Implemented
— etc.
— The command for this is ghsaudit
— Results go to the aud/<audit>/<build> directory

Wes
Generic Build Support - Concepts Copyright © Randy Marques L

Additional Tooling (System wide)

63

* Also tools like DoxyGen (Implemented) that work
more on System level.

— The command for this is ‘gbssystool’
— Results go to the silo directory

Generic Build Support - Concepts Copyright © Randy Marques

I& ’M_

Creating Deliveries

64

e Export directory
— Results for the end-customer
— Any set of (sub-)directories

e export.gbs files
— One per component
— Specifies which files to export
— Build dependent

e gbsexport

Generic Build Support - Concepts

Copyright © Randy Marques

(lte,

Creating Deliveries

Sub_1
comp export

ZAN

1 export.ghs export.gbs export.gbs
A B C
src Inc bid

65 Generic Build Support - Concepts Copyright © Randy Marques f«l”;

Overview

66

Task Lifecycle
Problem Areas
The Solution

— Directory Structure and scripting
— Integrity

— Finalizing

Final Remarks & Questions

Generic Build Support - Concepts

Copyright © Randy Marques

(lts,

Veritying Builds

* When the generation of a file fails the possibly
generated file in the BLD will be deleted.

— In case of compilation or archiving, subsequent steps (e.g.
link) will also fail
 Before CONSOLIDATION we can now check whether a
file generated properly:

If there is no corresponding file in the BLD directory, the
CONSOLIDATION may NOT be executed.

SRC:<name>.<type>
must match

BLD :<name>. *

A .v;'? /

67 Generic Build Support - Concepts Copyright © Randy Marques

Overview

68

Task Lifecycle
Problem Areas
The Solution

— Directory Structure and scripting
— Integrity
— Finalising

Final Remarks & Questions

Generic Build Support - Concepts

Copyright © Randy Marques

(lts,

Subdirectories - 1

69

* SRC

— Trigger in generation process. Results go to BLD/<build> directory

Scanned for dependencies.
Archived in SCM

* INC

— Exported to generation of other components

Scanned for dependencies.
Archived in SCM

 LOC

Scanned for dependencies.
Archived in SCM

* BLD

<build> Contains results of SRC generations

Exported to build of other components
Scanned for dependencies
Full delete of contents allowed

Generic Build Support - Concepts

Copyright © Randy Marques

Vi

L

Y A
\J (!
I [/
[.

Subdirectories - 2

70

* AUD

— <aud>/<build> Contains results of 'audits' (QAC / PCLint, etc)
— Full delete of contents allowed

 DAT

— Contains any other data that partakes in the assembling (not
building) of the resulting delivery. e.g.:

* bitmaps
* scripts to run/test the deliveries

— Archived in SCM

* SAV

— Contains anything that has to be kept but does not partake in the
generation-process, at this time

e old stuff
— Archived in SCM

[/ “‘\;;') { }
Generic Build Support - Concepts Copyright © Randy Marques Y Y

The Bigger Picture - 1

71

* Handling of SubSystems on a System Level

— export directory
* deliverables
* export.gbs file in every component

— res directory
* subsystem directory

— ghsexport

* Generation of non-compliant SubSystems
— export directory
— 'build’ script

* Direct reference from one SubSystem to another is
absolutely not allowed

Generic Build Support - Concepts Copyright © Randy Marques

The Bigger Picture - 2

build
e

-

comp export data
SN N N
72 Generic Build Support - Concepts

/ !

ext

ZON

Sub 3

IR

export | | comp export
ZANZN / /5

Copyright © Randy Marques

/ ;L/J;::'.

The Bigger Picture - 3

* To build a whole System:

— Build first SubSystem

* GBS-compliant:
— 'build' or 'make' the SubSystem
— 'gbsexport' (copies files to 'res'/'export' directory)

* Non GBS-compliant:

— Execute 'build' script in SubSystem directory
At the end, deliverables must be in 'export' directory

— 'gbsexport' (copies files to 'res'/'export' directory)

— Build next SubSystem

* efc

73 Generic Build Support - Concepts Copyright © Randy Marques

Overview

74

* Task Lifecycle

* Problem Areas

* The Solution

* Does it Work

* Final Remarks & Questions

Generic Build Support - Concepts

Copyright © Randy Marques

Does it Work

75

GBS is based on experiences with 'CCS’, the Code Control
System developed at Philips Medical Systems in 1985
— Designed and developed by Randy Marques

— Used for over 15 years by a variety of small and large projects
* still in use for maintenance projects

— Written for VAX/VMS in DCL
* GBS Started development in 2001

— New technology — same concept
— 2013: Improved User-Interface
— 2018: GUI

* Now available for Windows 10, WSL and Linux

— Written mainly in Perl to ensure exact same functionality on all
platforms

— Only dependent on Perl. No special privileges required.

Generic Build Support - Concepts Copyright © Randy Marques

ASA-Lab Pilot -1

76

* Pilot project at Philips ASA-Lab
— Multi-Site (Eindhoven, Dublin, Suresnes and Bangalore)
— Approx. 30 developers (UNIX + NT)
— Processors: ST20, MIPS5.1, PC
— Compilers: OpenTv (1), C (3), C++ (3), Assembler(2)
— SCMS: ClearCase UCM
— Application: Multi Language variants: 5 x 2 Executables
— Size
e 13 SubSystems
* 241 Components
e 1182 Source-files
* 611 Local header files
* 545 Global header files

e 160 Libraries / 41 Executables
e 8 Externals (3rd party components)

/",y'/; Y B 4
yF JF rF
.) N

Generic Build Support - Concepts Copyright © Randy Marques

ASA-Lab Pilot - 2

77

Originally:
— Both platforms: existing code in separate archives

— Considerable amount of shared code

* Good idea: Universal Archive
(let same code go through 2(3) compilers)

— Considered major effort:
* 6 man-monthsin 3 months
* Non-workable situation during 1 month for 10 people

— 2x5x4=40 executables from 20 full generations

With introduction of GBS:

— First platform: silently

— Second platform:
e 1 man-month in 3 weeks

* Same way of working for all platforms:
— No impact for others during introduction

— 2x5=10 executables from 2 full generations
— QAC fully integrated

Generic Build Support - Concepts Copyright © Randy Marques

/‘h',/ 'i" ‘;:-/} \' y
[[/

ASA-Lab Pilot - 3

* Originally:
— Developers:
* Had no idea of how the build (make) process worked.
* Did not know how to introduce new (source-)files
* Did not know where to find headerfiles and/or libraries
* Did not know how to generate a new library or executable
* Did not know how to generate another SubSystem
e Could not run QAC

— The 'make' process was unsafe

 With introduction of GBS:

— Developers:
* Know exactly where to place and find files
* Understand the 'make' process
e Agree: More output per worked hour

— Safe 'make' process

/;’;, ,',/":' § "'.:;.»,.' W,
78 Generic Build Support - Concepts Copyright © Randy Marques \

Facet- 1

79

* Project at Atos Origin for Electron Microscope
— 4.5 developers (MSWindows)

— Processors: PC
— Compilers: Visual C, MFC, COM (idl, mc and rc-files)
— SCMS: Visual Source Safe
— Size
e 1 SubSystem
11 Components and growing

152 Source-files
300 KLOC
2 Externals (3rd party components)

Generic Build Support - Concepts Copyright © Randy Marques

/",y'/; Y B 4
! | y rF
.) N

Facet - 2

80

e Benefits

— Starting-up GBS took 1 day
(after 1 week of investigating the Microsoft build environment...)

— Minimal (no) overhead when introducing new component or files
— Hardly any build problems

— 6 hours/week build-overhead reduced to less than 2 hours/week
— Consistent and reliable build-environment

— Very short learning curve

— Command-line interface (fast!)

 Drawbacks
— Command-line interface (learning curve)

Generic Build Support - Concepts Copyright © Randy Marques

Where is (was) GBS used

81

Philips AppTech, Eindhoven

— Various projects

Philips Lighting, Eindhoven
Philips Research, Eindhoven
IWEDIA, Rennes
TASK24/Nspyre, Eindhoven (SAS)

— Various projects

SiemensVDO

— Eindhoven
— Budapest
— Rambouillet
— Bangalore

Rialtosoft (Eindhoven)

Generic Build Support - Concepts Copyright © Randy Marques

i 4

g
I [/
Rl '/

| B Y A

Current State

82

Measurable benefits:

— Move from ClearCase to Synergy
* GBS part: 30 minutes
* Non-GBS part: 2 weeks

— From PDSL Eindhoven to IWEDIA Rennes
Same software as above

* GBS part: 1 hour
* Non-GBS part: 1 week

— Philips AppTech
* Add a new compiler: 15 minutes
* Implement LSF: 10 minutes

General benefits:

— Quick project startup

— Interchangeable developers and components
— "Build problems are not an issue"

Generic Build Support - Concepts Copyright © Randy Marques

/",y'/; Y B 4
yF JF rF
.) N

Overview

83

* Task Lifecycle

* Problem Areas

* The Solution

* Does it Work

* Final Remarks & Questions

Generic Build Support - Concepts

Copyright © Randy Marques

I& ’M_

Good Design Poor Masonry...

* Design gets lots of e (Too) Little concern /
attention. (Architect) appreciation for the
building process.

* Code Architect
(Construction
Supervisor) (Dutch:
bouwmeester)

84 Generic Build Support - Concepts Copyright © Randy Marques f”"*;

Features

85

* Fully portable and relocatable directory
structure

* Multiple platform support
(Win10/WSL/Linux)

* Same physical directory structure used for all
platforms (on shared network-drives)

* Generated, full compliant 'make’ files
— 100% reliable builds
— Cross reference

* Allows subdivision into SubSystems and
Components

* Any number of SubSystems and/or
Components

* Any number of libraries and/or executables
per Component

* Strict applicable scoping rules
* Support for generation of 3rd party software
* Integrated support for any compiler

* Integrated support for Auditing tools like
QAC, QAC++, PCLint and C++Test

* Integrated support for Documentation tools
like Doxygen

* No user-written scripts

Generic Build Support - Concepts

Support for multi-site environments
Command-line oriented with GUI

Support for GUI integration (e.g. Visual
Studio, SlickEdit, Eclipse)

Automated directory creation and structure
setup

Independent from Configuration
Management System (CMS)

— CMSs supported (for automated structure
creation), SubVersioN and Git

Parallel generation (also in ‘grid’)

Background generation ('at' jobs) with
extensive logfile

Prepared for tools like 'Softfab', ‘BuildForge’,
'Hudson' and 'CruiseControl'

Uniform way of working

Simple in use. Easy to learn. Powerful due to
simplicity and consistency

Suitable for small, medium and large systems

Only dependent on Perl (Version 5.16 or
later)

Copyright © Randy Marques \ :

Final Remarks & Questions

86

* No 100% solution
 Combat proven
* Requires change of focus

e (Questions

Task Lifecycle

Problem Areas

* Directory Structure

* Scripting

* Integrity

* Variants

* Tooling

The Solution

* Flat and rigid directory structure
* make-file generation

* The Bigger Picture

Does it Work

Generic Build Support - Concepts

Copyright © Randy Marques

—_

p

-y R

s R

Final Remarks & Questions

87

Smart people find complex solutions

Intelligent people find simple solutions

Generic Build Support - Concepts Copyright © Randy Marques

Illh

H
1
E
3
]

	Slide 1: GBS Generic Build Support
	Slide 2: Introduction - Who am I
	Slide 3: Scope
	Slide 4: Overview
	Slide 5: Task Lifecycle: Single Level Promotion Model
	Slide 6: Overview
	Slide 7: Volume
	Slide 8: Volume
	Slide 9: From Barn to Skyscraper
	Slide 10: Overview
	Slide 11: Problem Area: Scripting
	Slide 12: Problem Area: ‘make’-Scripting
	Slide 13: Problems With ‘make’
	Slide 14: Problems With ‘make’...
	Slide 15: ‘make’ Basics
	Slide 16: What About IDEs?
	Slide 17: What About IDEs?
	Slide 18: Overview
	Slide 19: Problem Area: Directory Structure
	Slide 20: Software Structure
	Slide 21: Component Structure
	Slide 22: Directory Structure - Flexibility
	Slide 23: Overview
	Slide 24: Problem Area: Integrity
	Slide 25: Overview
	Slide 26: Problem Area: Variants - 1
	Slide 27: Problem Area: Variants - 2
	Slide 28: Platform Variants
	Slide 29: Functionality Variants
	Slide 30: Compile Time Diversity
	Slide 31: Run Time Diversity
	Slide 32: Run Time Diversity
	Slide 33: Overview
	Slide 34: Delivering
	Slide 35: Overview
	Slide 36: Problem Area: Additional Tooling
	Slide 37: Overview
	Slide 38: Solution
	Slide 39: Solution: Basic Rules
	Slide 40: Prepare Yourself
	Slide 41: Overview
	Slide 42: ‘Flat’ Directory Structure
	Slide 43: ‘Flat’ Directory Structure
	Slide 44: Non GBS Compliant
	Slide 45: GBS Compliant
	Slide 46: Sub Directories
	Slide 47: Currencies
	Slide 48: Scoping
	Slide 49: Compile-time Options - 1
	Slide 50: Compile-Time Options - 2
	Slide 51: Build Automation Basics
	Slide 52: Generating a Compilation
	Slide 53: Libraries And Executables
	Slide 54: Generating a Link
	Slide 55: Generating a Library
	Slide 56: Automatic Testing too…
	Slide 57: Generating a SubSystem
	Slide 58: Flavors of 'build'
	Slide 59: Generating a make-file
	Slide 60: Flavors of ‘make’
	Slide 61: Differences between 'build' and 'make'
	Slide 62: Additional Tooling
	Slide 63: Additional Tooling (System wide)
	Slide 64: Creating Deliveries
	Slide 65: Creating Deliveries
	Slide 66: Overview
	Slide 67: Verifying Builds
	Slide 68: Overview
	Slide 69: Subdirectories - 1
	Slide 70: Subdirectories - 2
	Slide 71: The Bigger Picture - 1
	Slide 72: The Bigger Picture - 2
	Slide 73: The Bigger Picture - 3
	Slide 74: Overview
	Slide 75: Does it Work
	Slide 76: ASA-Lab Pilot - 1
	Slide 77: ASA-Lab Pilot - 2
	Slide 78: ASA-Lab Pilot - 3
	Slide 79: Facet - 1
	Slide 80: Facet - 2
	Slide 81: Where is (was) GBS used
	Slide 82: Current State
	Slide 83: Overview
	Slide 84: Good Design Poor Masonry…
	Slide 85: Features
	Slide 86: Final Remarks & Questions
	Slide 87: Final Remarks & Questions

