
Randy Marques Consultancy
Embedded Software Development

randy.marques.com@xs4all.nl

GBS
Generic Build Support

A Pragmatic Approach to the
Software Build Process

6.00

Copyright © Randy Marques

• Randy Marques - CASE Consultant
‒ Retired
‒ CEO / Owner Randy Marques Consultancy
‒ Nederlands Normalisatie Instituut (NEN)

• Nederlandse Programmeertalen Commissie (NC 381 22)
– WG14 (International ANSI-C Committee)

‒ Teach at various Universities and Colleges

• “Consultancy by Walking Around”
‒ Software Engineering since 1971
‒ Coding Standards since 1978
‒ Build Automation since 1980
‒ C Programming since 1983
‒ Static Analysis since 1993
‒ Les Hatton’s Safer CTM trainer since 2001

Generic Build Support - Concepts2

Introduction - Who am I

Copyright © Randy Marques

• Low, Low Level ‘Configuration Management’

• Build Automation

‒ Compiling, Linking

‒ F5

• Issues

‒ Directory Structure

‒ Scripting (‘make’)

‒ Multi Platform Variants

‒ Functionality Variants

‒ 3rd party software, Subcontracting, ‘re-use’

‒ Releasing

Generic Build Support - Concepts3

Scope

Copyright © Randy Marques

• Task Lifecycle

• Problem Areas

• The Solution

• Does it Work

• Final Remarks & Questions

Generic Build Support - Concepts4

Overview

Copyright © Randy Marques

Task Lifecycle:
Single Level Promotion Model

Generic Build Support - Concepts5

ARCHIVED

WORKING

Check Out

COMPLETED

Check In / Deliver

INTEGRATOR

Take

ARCHIVED’

Consolidate /
Baseline

Copyright © Randy Marques

• Task Lifecycle

• Problem Areas
‒ Volume

‒ Scripting

‒ Directory Structure

‒ Integrity

‒ Variants

‒ Delivering

‒ Tooling

• The Solution

• Does it Work

• Final Remarks & Questions

Generic Build Support - Concepts6

Overview

Copyright © Randy Marques

• Software Generation:
‒ Lines of code
• 20 files of 100 lines -> 5000 files of 400 lines

• 2000 lines -> 2.000.000 lines
– Generation takes better part of the night

• 2 ‘specials’ (10%) -> 500 ‘specials’
– Quick Fix???

‒ People
• 4 programmers -> 80 programmers

• 1 Programmer
– 1 Check-in every week

– 1 build-error every 15 check-ins

» Every 75 days 1 build-error

• 75 Programmers
– Every day the build fails!

Generic Build Support - Concepts7

Volume

Copyright © Randy Marques

• Success breeds complexity
‒ Brian A. White

(Software Configuration Management Strategies)

• The size of code in consumer electronic products
currently doubles every 18 months
‒ Line-Scan TVs have ~ 1.500.000 lines of code

• Murphy’s Law:
‒ If something CAN go wrong,

if you do it often enough,
it WILL go wrong

Generic Build Support - Concepts8

Volume

Copyright © Randy Marques

From Barn to Skyscraper

• We started off building
yard barns

• And we are convinced
that to build
skyscrapers we only
need to extrapolate...

Generic Build Support - Concepts9

Copyright © Randy Marques

• Task Lifecycle

• Problem Areas
‒ Volume

‒ Scripting

‒ Directory Structure

‒ Integrity

‒ Variants

‒ Delivering

‒ Tooling

• The Solution

• Does it Work

• Final Remarks & Questions

Generic Build Support - Concepts10

Overview

Copyright © Randy Marques

• Start simple
• Complex and elaborate scripting

‒ Dedicated
• per project (subsystem / component / file)
• per platform, per user, per exception
• per release

‒ Used to solve Managerial and Architectural issues (Silver Bullet)
‒ Support for the weirdest exceptions

(even the one we consider 'bad practice')
‒ Inconsistent
‒ Platform dependent
‒ Impossible to change
‒ Long learning curve (use and maintenance)
‒ Much, very much maintenance
‒ Hard-coded, absolute file-paths, search-paths
‒ Dependent on external local settings (.profile / Registry)
‒ Abuse of 'make'

Generic Build Support - Concepts11

Problem Area: Scripting

Copyright © Randy Marques

• The essence of ‘make’:
‒ re-generate as little as possible
‒ Dependencies
‒ ‘A Program for Directing Recompilation’ (GNU-make)

• Pollution of ‘make’
‒ Used to define build-process instead of supporting build-process

• Header-file directory specification
• Compile options
• Generation of various functionality/platform variants

‒ Unsafe make:
• Always 'clean' and 'build all'

If I always regenerate my whole system
(because my 'make' is not safe):

Why do I use 'make'?

Generic Build Support - Concepts12

Problem Area: ‘make’-Scripting

Copyright © Randy Marques

• Maintaining Dependencies

• Start-off small & simple.
Grow and become too complex
‒ No-one dares to make modifications

‒ Not-maintainable make-files (> 40.000 lines!)

• Multiple checkout on make-files

• Completely platform/environment dependent

• Build for more than 1 platform?
‒ On different machines

• Suffix rules: all files must be in same directory

• Search-paths (differ on various machines)

• more...

Generic Build Support - Concepts13

Problems With ‘make’

Copyright © Randy Marques

• Recursive make
‒ Recursive make Considered Harmful (1997)

Peter Miller
http://www.canb.auug.org.au/~millerp/rmch/recu-make-cons-harm.html

• Weird restrictions: e.g.:
‒ only 1 library/executable per component

‒ make of single file not possible

‒ etc.

• Extremely complex

No Design, No Standards, No Reviews,
No-one feels responsible

Generic Build Support - Concepts14

Problems With ‘make’...

Copyright © Randy Marques

‘make’ Basics

• make-File:
‒ Collection of make-rules

‒ Macros & Control-
statements

• make-Rule:

target : dependencies

<TAB> command [; …]

edit.exe : main.o kbd.o command.o

<TAB> lnk -o edit.exe main.o \

kbd.o command.o

main.o : main.c defs.h

<TAB> cc -c main.c

kbd.o : kbd.c defs.h command.h

<TAB> cc -c kbd.c

command.o : command.c defs.h \

command.h

<TAB> cc -c command.c

Generic Build Support - Concepts15

Copyright © Randy Marques

• IDEs:
‒ Visual Studio, Tornado, Greenhills

‒ OpenSource: ant, scons, quickbuild, etc.

• Problems:
‒ Obscure internals

‒ Dedicated:
• No interaction between different brands

• Build for more than one Platform: problems

‒ (Elaborate) scripting needed

‒ Based on ‘handy-tool’ concept. Not SWE concept.
• Flexible, so every project (release) has different implementation…

‒ Sales argument:
"We will support whatever way of working you want“

Generic Build Support - Concepts16

What About IDEs?

Copyright © Randy Marques

• Make life simple on programmer’s level
(“Every nitwit can”)
not on Project or Company level.

• No support for structured way of working (scoping)

• Limitations on number of executables, libraries, etc

• Dependent on search-paths

• No automatic testing integration (module-test)

• Dependent on various specific versions of different
tools (OpenSource)

• Anyone can do it 'in his own way'

Generic Build Support - Concepts17

What About IDEs?

Copyright © Randy Marques

• Task Lifecycle

• Problem Areas
‒ Volume

‒ Scripting

‒ Directory Structure

‒ Integrity

‒ Variants

‒ Delivering

‒ Tooling

• The Solution

• Does it Work

• Final Remarks & Questions

Generic Build Support - Concepts18

Overview

Copyright © Randy Marques

• Trying to map a software-structure on a directory
structure

‒ Software Structure:
• Tree-like Network Structure

‒ Directory Structure:
• Tree Structure

• Relocating a directory inside the tree structure
causes major problems in generation ('make') files

Generic Build Support - Concepts19

Problem Area: Directory Structure

Copyright © Randy Marques

Software Structure

Generic Build Support - Concepts20

A

M

LK

H

GF

D

J

ECB

N

Copyright © Randy Marques

• A multi-component system always consists of at least
4 components:

Generic Build Support - Concepts21

Component Structure

A B

main

A B

glo

Copyright © Randy Marques

• What effort does it cost to add a new component
‒ or compiler

‒ or variant

‒ or platform

• What are the consequences for an SCM-tool

• What do I do with ‘re-use’ from another project

• Environment variables, System Settings
‒ .profile?

‒ Registry?

Do I spend 4 man-months to define my dedicated directory-structure

and 'make'-method every time I start a new project?

Generic Build Support - Concepts22

Directory Structure - Flexibility

Copyright © Randy Marques

• Task Lifecycle

• Problem Areas
‒ Volume

‒ Scripting

‒ Directory Structure

‒ Integrity

‒ Variants

‒ Delivering

‒ Tooling

• The Solution

• Does it Work

• Final Remarks & Questions

Generic Build Support - Concepts23

Overview

Copyright © Randy Marques

• How safe/complete is my generation process
‒ Was really everything compiled before the link?

‒ Did all files compile properly before Freeze/Archiving/Release?

• Given an executable, can I recreate exactly the
environment leading to its creation?
‒ Sources

‒ Parameters (compile-time options)

Given the amount of money spent on SCM-tools and
procedures, how reliable is my ability to regenerate the

software?

Generic Build Support - Concepts24

Problem Area: Integrity

Copyright © Randy Marques

• Task Lifecycle

• Problem Areas
‒ Volume

‒ Scripting

‒ Directory Structure

‒ Integrity

‒ Variants

‒ Delivering

‒ Tooling

• The Solution

• Does it Work

• Final Remarks & Questions

Generic Build Support - Concepts25

Overview

Copyright © Randy Marques

• Versions
‒ Taken care of by SCMS

• Variants / Diversity
‒ Platform

‒ Functionality
• Hardware

• Software

• Compile-time Options &
Conditional Compiles
‒ Many Options

‒ Many Possible Values

Generic Build Support - Concepts26

Problem Area: Variants - 1

#ifdef __SUN__

…

…

…

#endif

Copyright © Randy Marques

• Problems:

‒ Too many permutations

• Always starts with just a few...

• Which combinations are valid?

• Not readable, not maintainable

‒ Which variant is now in my object-library?

‒ Which variant did I build my executable with?

‒ Compile archived version with different option:

• compilation fails

‒ Not Testable

Given an executable that was built on a specific date and time:
What were the settings that led to this executable?

(I mean: ALL the settings...)

Generic Build Support - Concepts27

Problem Area: Variants - 2

Copyright © Randy Marques

• Compile-Time diversity (Conditional Compiles)

• Link-time diversity (Multiple Sources)
‒ file.c
• file_pc.c => file_pc.o time()

• file_vms.c => file_vms.obj time()

• file_sun.c => file_sun.o time()

‒ BLD
• PC <= Build-output Directory

• VMS

• SUN

• Combinations
Platform dependent functionality should be isolated into one or

two components

Generic Build Support - Concepts28

Platform Variants

Copyright © Randy Marques

• Link-Time diversity (Multiple Sources)

• Run-Time diversity

• Combinations

• As an example we will use the generation of two
executables that share a lot of code:

‒ A Video-Player and

‒ A Video-Recorder

Generic Build Support - Concepts29

Functionality Variants

Copyright © Randy Marques

• Traditional Approach:
MAKE-FILE:

-D RECORDER

FILE.C:

#ifdef RECORDER

…

…

#else

…

…

#endif

Generic Build Support - Concepts30

Compile Time Diversity

Copyright © Randy Marques

Run Time Diversity

• Compile-Time:

#ifdef RECORDER

...

...

do_recorder();

#else

...

...

...

#endif

• Run-Time:

if (recorder())

{

...

do_recorder();

} else

{

...

...

}

Generic Build Support - Concepts31

Copyright © Randy Marques

• Setting the condition for ‘recorder’:
‒ Link-Time diversity

• File1: return TRUE

• File2: return FALSE

• Link with either file

• 'Stubs' to save memory

‒ Read a file (.ini)

‒ Read Hardware jumpers

‒ Read command-line arguments

‒ Ask the user

Diversity is not a Build issue:
It is a SW Architectural issue

Generic Build Support - Concepts32

Run Time Diversity

Copyright © Randy Marques

• Task Lifecycle

• Problem Areas
‒ Volume

‒ Scripting

‒ Directory Structure

‒ Integrity

‒ Variants

‒ Delivering

‒ Tooling

• The Solution

• Does it Work

• Final Remarks & Questions

Generic Build Support - Concepts33

Overview

Copyright © Randy Marques

• What do I deliver

• What is my product

‒ Executable

‒ Libraries + headerfiles

‒ Directory structure

‒ Install

• How do I “assemble” my deliverable?

‒ Copy directly from bld-directory?

‒ Document?

‒ Script?

Generic Build Support - Concepts34

Delivering

Copyright © Randy Marques

• Task Lifecycle

• Problem Areas
‒ Volume

‒ Scripting

‒ Directory Structure

‒ Integrity

‒ Variants

‒ Delivering

‒ Tooling

• The Solution

• Does it Work

• Final Remarks & Questions

Generic Build Support - Concepts35

Overview

Copyright © Randy Marques

• How to implement additional tooling

‒ Doxygen

‒ SCAs like PCLint, QAC, C++Test

• Automatic Testing

• Multiplatform?

• Example:

‒ QAC
• How do I specify which files to check

• How do I obtain header-file include directories (-I)?

• How do I obtain compile time options (-D)?

• ‘make’ ?

Generic Build Support - Concepts36

Problem Area: Additional Tooling

Copyright © Randy Marques

• Task Lifecycle

• Problem Areas

• The Solution

• Does it Work

• Final Remarks & Questions

Generic Build Support - Concepts37

Overview

Copyright © Randy Marques

• A Concept

• A Set of Agreements

• A Rigid Directory Structure

• No built-in Knowledge of Application

• No user-written scripts

• Generated 'make' Files

• Multiplatform generation

• Implementation Support:
‒ Scripts

‒ Currencies
• Current System, Current SubSystem, Current Component, Current Build

Generic Build Support - Concepts38

Solution

Generic Build Support

Copyright © Randy Marques

• Simple approach. No Black Box. KISS
• Transparent: No clever tricks
• Rigid where no flexibility is required

Full flexibility where flexibility is needed
• Do not cater for things we agree to be ‘bad practice’
• No project-dependent scripting
• Automate anything that can go wrong when done

manually
(but do not try to achieve 100% automation when in
conflict with Rule 1)

• Must be generic (no knowledge of application)
• Must be SCMS and target-platform independent
• Must have a relocatable directory-structure

Generic Build Support - Concepts39

Solution: Basic Rules

Copyright © Randy Marques

• Take a deep breath

• Stretch yourself

• Empty your mind

‒ Do NOT think of your current implementation

• Relax

Generic Build Support - Concepts40

Prepare Yourself

Copyright © Randy Marques

• Task Lifecycle

• Problem Areas

• The Solution

‒ Directory Structure and scripting

‒ Integrity

‒ Finalizing

• Does it Work

• Final Remarks & Questions

Generic Build Support - Concepts41

Overview

Copyright © Randy Marques

• System:

‒ EXT (externals) Directory
• 3rd party SW Directories

‒ DEV (Development) Directory
• SubSystem Directories

‒ RES (Results) Directory
• SubSystems Transfer Directories

Generic Build Support - Concepts42

‘Flat’ Directory Structure

Copyright © Randy Marques

• SubSystem Directory (non-GBS Compliant)

‒ APP-Directory
• Grow Your Own

‒ DATA-Directory
• Grow Your Own

‒ EXPORT-Directory (Optional)

‒ Main scripts

• SubSystem Directory (GBS Compliant)

‒ COMP-Directory
• Component Directories

– Sub-Directories (SRC, INC, BLD, etc.)

‒ EXPORT-Directory (Optional)

Generic Build Support - Concepts43

‘Flat’ Directory Structure

Copyright © Randy Marques

Non GBS Compliant

Generic Build Support - Concepts44

SubSystems

Any Structure

APP

System

dev extres

Sub_1 Sub_3Sub_2

app

build

data

System_2 System_3System_1

Copyright © Randy Marques

GBS Compliant

Generic Build Support - Concepts45

SubSystems

Components

COMP

Sub-Directories

System

Sub_2

comp

A B C D E

src inc bld dat

dev extres

Sub_1 Sub_3

System_2 System_3System_1

Copyright © Randy Marques

• SRC
‒ Sources

• INC
‒ Global (exported) Header-files

• LOC
‒ Local Header-files

• BLD
‒ Contains <build>-Directories

• Results of building (compilations)

• AUD
‒ Results of additional tooling (qac, pclint etc)

• More later...

Generic Build Support - Concepts46

Sub Directories

Copyright © Randy Marques

• GBS works with ‘currencies’:
‒ Current System
‒ Current SubSystem
‒ Current Component
‒ Current Build

• Navigate thru the directory tree by means of ‘switch’
commands:
‒ swr: switch System
‒ sws: switch SubSystem
‒ etc.

• The current Build specifies a specific compiler
environment
‒ Compiler / Archiver / Linker to use
‒ Settings

Generic Build Support - Concepts47

Currencies

Copyright © Randy Marques

• Scope-files contain component-names, no directory specs.

• SCOPE.GBS in Component Directory
‒ Specifies the ‘VIEW’

• ‘Uses’ and ‘Is Used’

Generic Build Support - Concepts48

Scoping

Sub_1

comp

A B C D E

src inc bld . . .

A

B

C

D

E E

B

E

C

B

E

component directories

D

E

EXT/RES directories-ref

Copyright © Randy Marques

• Options are placed separately in option-files

‒ Options for all C-files in project:
• FLAGS_C.GBS In COMP directory

‒ Options for all C-files in component:
• In FLAGS_C.GBS in Component directory

• For compilation, options are placed in the order
specified above.

‒ Last option wins...

Generic Build Support - Concepts49

Compile-time Options - 1

Copyright © Randy Marques

Compile-Time Options - 2

Generic Build Support - Concepts50

Sub_1

comp

A B C D E

src inc bld

-Dxxx

-Dyyy

-Dzzz

FLAGS_C.GBS

-Daaa

-Dbbb

FLAGS_C.GBS

Copyright © Randy Marques

• Anatomy of a Build Step

Generic Build Support - Concepts51

Build Automation Basics

original files

generated files

control

name.zzz

Build Step
name.xxx name.yyy

Copyright © Randy Marques

• Given a source file of the current Component of the
current SubSystem of the current System with a
current Build, we have:
‒ Source File name (file.c)

‒ Compiler to be used

‒ Extension of object-file name (.o)

‒ Object-file name (file.o)

‒ Header-File Directory information

‒ Compile Options Information

‒ Input & Output Directory

• So we have a generic script that generates a
dedicated compile command.

Generic Build Support - Concepts52

Generating a Compilation

Copyright © Randy Marques

• What if I do not have a source-file?

‒ Libraries

‒ Executables

Generic Build Support - Concepts53

Libraries And Executables

Copyright © Randy Marques

• Traditionally done in ‘make’ file

• Enter: Link-file
‒ Works the same way as 'compile file'

‒ name.glk => name.exe

‒ Contains:
component:objectfile-name

‒ Also:
.include <inc-filename>

• So we have a generic script
that generates a dedicated
link command.

Generic Build Support - Concepts54

Generating a Link

• name.glk => name.exe
• Contents:

A:main.o

A:a.o

A:a1.o

B:b.o

B:b1.o

C:c.lib

Copyright © Randy Marques

• Traditionally done in ‘make’ file

• Enter: Library-file
‒ Works the same way as 'compile file'

‒ name.glb => name.lib

‒ Contains:
component:objectfile-name

‒ Also:
.include <inc-filename>

• So we have a generic script
that generates a dedicated
archive command.

Generic Build Support - Concepts55

Generating a Library

• name.glb => name.lib

• Contents:
A:a.o

A:a1.o

B:b.o

B:b1.o

C:c.lib

Copyright © Randy Marques

• Module-tests as part of the build-system

• Enter: Test-file:

‒ Works the same way as ‘compile file’

‒ name.glt => name.log

‒ Contains:
component:executable-name

‒ Returns: Normal or Fail

• So we have a generic script
that generates a dedicated
test-command

Generic Build Support - Concepts56

Automatic Testing too…

• name.glt => name.log

• Contents:

A:MyTest.exe

Copyright © Randy Marques

• In the SRC directories of all Components:

‒ Compile all *.c files into objects

• In the SRC directories of all Components:

‒ Archive all *.glb files into libraries

• In the SRC directories of all Components:

‒ Link all *.glk files into executables

• All results go to the current BLD/<Build> directories

Generic Build Support - Concepts57

Generating a SubSystem

Copyright © Randy Marques

• gbsbuild file.c

• gbsbuild <list of individual files from same or other
component>

• gbsbuild <all files in one or more components>

• gbsbuild <all files in one or more subsystems>

• gbsbuild *:*.*

• etc...

Generic Build Support - Concepts58

Flavors of 'build'

Copyright © Randy Marques

• For each Component:

‒ Take each file in the SRC-directory as a 'make'-target

‒ Parse the file using the same information as for generation
of Compile, Archive or Linking to determine dependencies

‒ Generate the make-file

Generic Build Support - Concepts59

Generating a make-file

Copyright © Randy Marques

• gbsmake image.exe

• gbsmake <list of specific files>

• gbsmake <all files in list of specific components>

• gbsmake <SubSystem>

• etc...

Generic Build Support - Concepts60

Flavors of ‘make’

Copyright © Randy Marques

• 'build'

‒ you specify the source (e.g. file.c)

‒ only the specified file(s) will be built

‒ all the specified files will be built

• 'make'

‒ you specify the resulting file (e.g. file.o)

‒ other files (even in other components) may be built

‒ specified files may or may not be (re-) built

Generic Build Support - Concepts61

Differences between 'build' and 'make'

Copyright © Randy Marques

• Given the method for generating a dedicated build
step command we can easily implement any kind of
auditing (SCA) tool

‒ QAC, QAC++, PCLint , C++Test
• Implemented

‒ etc.

‒ The command for this is gbsaudit

‒ Results go to the aud/<audit>/<build> directory

Generic Build Support - Concepts62

Additional Tooling

Copyright © Randy Marques

• Also tools like DoxyGen (Implemented) that work
more on System level.

‒ The command for this is ‘gbssystool’

‒ Results go to the silo directory

Generic Build Support - Concepts63

Additional Tooling (System wide)

Copyright © Randy Marques

• Export directory

‒ Results for the end-customer

‒ Any set of (sub-)directories

• export.gbs files

‒ One per component

‒ Specifies which files to export

‒ Build dependent

• gbsexport

Generic Build Support - Concepts64

Creating Deliveries

Copyright © Randy Marques

Creating Deliveries

Generic Build Support - Concepts65

Sub_1

A B C

comp

src inc bld . . .

export.gbs

export

export.gbs export.gbs

Copyright © Randy Marques

• Task Lifecycle

• Problem Areas

• The Solution

‒ Directory Structure and scripting

‒ Integrity

‒ Finalizing

• Final Remarks & Questions

Generic Build Support - Concepts66

Overview

Copyright © Randy Marques

• When the generation of a file fails the possibly
generated file in the BLD will be deleted.

‒ In case of compilation or archiving, subsequent steps (e.g.
link) will also fail

• Before CONSOLIDATION we can now check whether a
file generated properly:

If there is no corresponding file in the BLD directory, the
CONSOLIDATION may NOT be executed.

Generic Build Support - Concepts67

Verifying Builds

SRC:<name>.<type>

must match

BLD:<name>.*

Copyright © Randy Marques

• Task Lifecycle

• Problem Areas

• The Solution

‒ Directory Structure and scripting

‒ Integrity

‒ Finalising

• Final Remarks & Questions

Generic Build Support - Concepts68

Overview

Copyright © Randy Marques

• SRC
‒ Trigger in generation process. Results go to BLD/<build> directory
‒ Scanned for dependencies.
‒ Archived in SCM

• INC
‒ Exported to generation of other components
‒ Scanned for dependencies.
‒ Archived in SCM

• LOC
‒ Scanned for dependencies.
‒ Archived in SCM

• BLD
‒ <build> Contains results of SRC generations
‒ Exported to build of other components
‒ Scanned for dependencies
‒ Full delete of contents allowed

Generic Build Support - Concepts69

Subdirectories - 1

Copyright © Randy Marques

• AUD
‒ <aud>/<build> Contains results of 'audits' (QAC / PCLint, etc)

‒ Full delete of contents allowed

• DAT
‒ Contains any other data that partakes in the assembling (not

building) of the resulting delivery. e.g.:
• bitmaps

• scripts to run/test the deliveries

‒ Archived in SCM

• SAV
‒ Contains anything that has to be kept but does not partake in the

generation-process, at this time
• old stuff

‒ Archived in SCM

Generic Build Support - Concepts70

Subdirectories - 2

Copyright © Randy Marques

• Handling of SubSystems on a System Level
‒ export directory

• deliverables

• export.gbs file in every component

‒ res directory
• subsystem directory

‒ gbsexport

• Generation of non-compliant SubSystems
‒ export directory

‒ 'build' script

• Direct reference from one SubSystem to another is
absolutely not allowed

Generic Build Support - Concepts71

The Bigger Picture - 1

Copyright © Randy Marques

The Bigger Picture - 2

Generic Build Support - Concepts72

System

dev extres

Sub_2Sub_1

Sub_1

exportcomp

Sub_2

exportapp

build

data

Sub_3

exportcomp

Copyright © Randy Marques

• To build a whole System:

‒ Build first SubSystem
• GBS-compliant:

– 'build' or 'make' the SubSystem

– 'gbsexport' (copies files to 'res'/'export' directory)

• Non GBS-compliant:

– Execute 'build' script in SubSystem directory
At the end, deliverables must be in 'export' directory

– 'gbsexport' (copies files to 'res'/'export' directory)

‒ Build next SubSystem
• etc

Generic Build Support - Concepts73

The Bigger Picture - 3

Copyright © Randy Marques

• Task Lifecycle

• Problem Areas

• The Solution

• Does it Work

• Final Remarks & Questions

Generic Build Support - Concepts74

Overview

Copyright © Randy Marques

• GBS is based on experiences with 'CCS', the Code Control
System developed at Philips Medical Systems in 1985
‒ Designed and developed by Randy Marques
‒ Used for over 15 years by a variety of small and large projects

• still in use for maintenance projects

‒ Written for VAX/VMS in DCL

• GBS Started development in 2001
‒ New technology – same concept
‒ 2013: Improved User-Interface
‒ 2018: GUI

• Now available for Windows 10, WSL and Linux
‒ Written mainly in Perl to ensure exact same functionality on all

platforms
‒ Only dependent on Perl. No special privileges required.

Generic Build Support - Concepts75

Does it Work

Copyright © Randy Marques

• Pilot project at Philips ASA-Lab
‒ Multi-Site (Eindhoven, Dublin, Suresnes and Bangalore)
‒ Approx. 30 developers (UNIX + NT)
‒ Processors: ST20, MIPS5.1, PC
‒ Compilers: OpenTv (1), C (3), C++ (3), Assembler(2)
‒ SCMS: ClearCase UCM
‒ Application: Multi Language variants: 5 x 2 Executables
‒ Size

• 13 SubSystems
• 241 Components
• 1182 Source-files
• 611 Local header files
• 545 Global header files
• 160 Libraries / 41 Executables
• 8 Externals (3rd party components)

Generic Build Support - Concepts76

ASA-Lab Pilot - 1

Copyright © Randy Marques

• Originally:
‒ Both platforms: existing code in separate archives
‒ Considerable amount of shared code

• Good idea: Universal Archive
(let same code go through 2(3) compilers)

‒ Considered major effort:
• 6 man-months in 3 months
• Non-workable situation during 1 month for 10 people

‒ 2x5x4=40 executables from 20 full generations

• With introduction of GBS:
‒ First platform: silently
‒ Second platform:

• 1 man-month in 3 weeks
• Same way of working for all platforms:

– No impact for others during introduction

‒ 2x5=10 executables from 2 full generations
‒ QAC fully integrated

Generic Build Support - Concepts77

ASA-Lab Pilot - 2

Copyright © Randy Marques

• Originally:
‒ Developers:

• Had no idea of how the build (make) process worked.
• Did not know how to introduce new (source-)files
• Did not know where to find headerfiles and/or libraries
• Did not know how to generate a new library or executable
• Did not know how to generate another SubSystem
• Could not run QAC

‒ The 'make' process was unsafe

• With introduction of GBS:
‒ Developers:

• Know exactly where to place and find files
• Understand the 'make' process
• Agree: More output per worked hour

‒ Safe 'make' process

Generic Build Support - Concepts78

ASA-Lab Pilot - 3

Copyright © Randy Marques

• Project at Atos Origin for Electron Microscope

‒ 4.5 developers (MSWindows)

‒ Processors: PC

‒ Compilers: Visual C, MFC, COM (idl, mc and rc-files)

‒ SCMS: Visual Source Safe

‒ Size
• 1 SubSystem

• 11 Components and growing

• 152 Source-files

• 300 KLOC

• 2 Externals (3rd party components)

Generic Build Support - Concepts79

Facet - 1

Copyright © Randy Marques

• Benefits

‒ Starting-up GBS took 1 day
(after 1 week of investigating the Microsoft build environment…)

‒ Minimal (no) overhead when introducing new component or files

‒ Hardly any build problems

‒ 6 hours/week build-overhead reduced to less than 2 hours/week

‒ Consistent and reliable build-environment

‒ Very short learning curve

‒ Command-line interface (fast!)

• Drawbacks

‒ Command-line interface (learning curve)

Generic Build Support - Concepts80

Facet - 2

Copyright © Randy Marques

• Philips AppTech, Eindhoven
‒ Various projects

• Philips Lighting, Eindhoven
• Philips Research, Eindhoven
• IWEDIA, Rennes
• TASK24/Nspyre, Eindhoven (SAS)

‒ Various projects

• SiemensVDO
‒ Eindhoven
‒ Budapest
‒ Rambouillet
‒ Bangalore

• Rialtosoft (Eindhoven)

Generic Build Support - Concepts81

Where is (was) GBS used

Copyright © Randy Marques

• Measurable benefits:
‒ Move from ClearCase to Synergy

• GBS part: 30 minutes
• Non-GBS part: 2 weeks

‒ From PDSL Eindhoven to IWEDIA Rennes
Same software as above
• GBS part: 1 hour
• Non-GBS part: 1 week

‒ Philips AppTech
• Add a new compiler: 15 minutes
• Implement LSF: 10 minutes

• General benefits:
‒ Quick project startup
‒ Interchangeable developers and components
‒ "Build problems are not an issue"

Generic Build Support - Concepts82

Current State

Copyright © Randy Marques

• Task Lifecycle

• Problem Areas

• The Solution

• Does it Work

• Final Remarks & Questions

Generic Build Support - Concepts83

Overview

Copyright © Randy Marques

Good Design Poor Masonry…

• Design gets lots of
attention. (Architect)

• (Too) Little concern /
appreciation for the
building process.

• Code Architect
(Construction
Supervisor) (Dutch:
bouwmeester)

Generic Build Support - Concepts84

Copyright © Randy Marques

Features

• Fully portable and relocatable directory
structure

• Multiple platform support
(Win10/WSL/Linux)

• Same physical directory structure used for all
platforms (on shared network-drives)

• Generated, full compliant 'make' files
‒ 100% reliable builds
‒ Cross reference

• Allows subdivision into SubSystems and
Components

• Any number of SubSystems and/or
Components

• Any number of libraries and/or executables
per Component

• Strict applicable scoping rules
• Support for generation of 3rd party software
• Integrated support for any compiler
• Integrated support for Auditing tools like

QAC, QAC++, PCLint and C++Test
• Integrated support for Documentation tools

like Doxygen
• No user-written scripts

• Support for multi-site environments
• Command-line oriented with GUI
• Support for GUI integration (e.g. Visual

Studio, SlickEdit, Eclipse)
• Automated directory creation and structure

setup
• Independent from Configuration

Management System (CMS)
‒ CMSs supported (for automated structure

creation), SubVersioN and Git

• Parallel generation (also in ‘grid’)
• Background generation ('at' jobs) with

extensive logfile
• Prepared for tools like 'Softfab', ‘BuildForge’,

'Hudson' and 'CruiseControl'
• Uniform way of working
• Simple in use. Easy to learn. Powerful due to

simplicity and consistency
• Suitable for small, medium and large systems
• Only dependent on Perl (Version 5.16 or

later)

Generic Build Support - Concepts85

Copyright © Randy Marques

• No 100% solution
• Combat proven
• Requires change of focus

• Questions
‒ Task Lifecycle
‒ Problem Areas

• Directory Structure
• Scripting
• Integrity
• Variants
• Tooling

‒ The Solution
• Flat and rigid directory structure
• make-file generation
• The Bigger Picture

‒ Does it Work

Generic Build Support - Concepts86

Final Remarks & Questions

Copyright © Randy Marques

Smart people find complex solutions

Intelligent people find simple solutions

Generic Build Support - Concepts87

Final Remarks & Questions

	Slide 1: GBS Generic Build Support
	Slide 2: Introduction - Who am I
	Slide 3: Scope
	Slide 4: Overview
	Slide 5: Task Lifecycle: Single Level Promotion Model
	Slide 6: Overview
	Slide 7: Volume
	Slide 8: Volume
	Slide 9: From Barn to Skyscraper
	Slide 10: Overview
	Slide 11: Problem Area: Scripting
	Slide 12: Problem Area: ‘make’-Scripting
	Slide 13: Problems With ‘make’
	Slide 14: Problems With ‘make’...
	Slide 15: ‘make’ Basics
	Slide 16: What About IDEs?
	Slide 17: What About IDEs?
	Slide 18: Overview
	Slide 19: Problem Area: Directory Structure
	Slide 20: Software Structure
	Slide 21: Component Structure
	Slide 22: Directory Structure - Flexibility
	Slide 23: Overview
	Slide 24: Problem Area: Integrity
	Slide 25: Overview
	Slide 26: Problem Area: Variants - 1
	Slide 27: Problem Area: Variants - 2
	Slide 28: Platform Variants
	Slide 29: Functionality Variants
	Slide 30: Compile Time Diversity
	Slide 31: Run Time Diversity
	Slide 32: Run Time Diversity
	Slide 33: Overview
	Slide 34: Delivering
	Slide 35: Overview
	Slide 36: Problem Area: Additional Tooling
	Slide 37: Overview
	Slide 38: Solution
	Slide 39: Solution: Basic Rules
	Slide 40: Prepare Yourself
	Slide 41: Overview
	Slide 42: ‘Flat’ Directory Structure
	Slide 43: ‘Flat’ Directory Structure
	Slide 44: Non GBS Compliant
	Slide 45: GBS Compliant
	Slide 46: Sub Directories
	Slide 47: Currencies
	Slide 48: Scoping
	Slide 49: Compile-time Options - 1
	Slide 50: Compile-Time Options - 2
	Slide 51: Build Automation Basics
	Slide 52: Generating a Compilation
	Slide 53: Libraries And Executables
	Slide 54: Generating a Link
	Slide 55: Generating a Library
	Slide 56: Automatic Testing too…
	Slide 57: Generating a SubSystem
	Slide 58: Flavors of 'build'
	Slide 59: Generating a make-file
	Slide 60: Flavors of ‘make’
	Slide 61: Differences between 'build' and 'make'
	Slide 62: Additional Tooling
	Slide 63: Additional Tooling (System wide)
	Slide 64: Creating Deliveries
	Slide 65: Creating Deliveries
	Slide 66: Overview
	Slide 67: Verifying Builds
	Slide 68: Overview
	Slide 69: Subdirectories - 1
	Slide 70: Subdirectories - 2
	Slide 71: The Bigger Picture - 1
	Slide 72: The Bigger Picture - 2
	Slide 73: The Bigger Picture - 3
	Slide 74: Overview
	Slide 75: Does it Work
	Slide 76: ASA-Lab Pilot - 1
	Slide 77: ASA-Lab Pilot - 2
	Slide 78: ASA-Lab Pilot - 3
	Slide 79: Facet - 1
	Slide 80: Facet - 2
	Slide 81: Where is (was) GBS used
	Slide 82: Current State
	Slide 83: Overview
	Slide 84: Good Design Poor Masonry…
	Slide 85: Features
	Slide 86: Final Remarks & Questions
	Slide 87: Final Remarks & Questions

